Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chinese Journal of Biotechnology ; (12): 2248-2264, 2023.
Article in Chinese | WPRIM | ID: wpr-981201

ABSTRACT

S-adenosyl-l-methionine (SAM) is ubiquitous in living organisms and plays important roles in transmethylation, transsulfuration and transamination in organisms. Due to its important physiological functions, production of SAM has attracted increasing attentions. Currently, researches on SAM production mainly focus on microbial fermentation, which is more cost-effective than that of the chemical synthesis and the enzyme catalysis, thus easier to achieve commercial production. With the rapid growth in SAM demand, interests in improving SAM production by developing SAM hyper-producing microorganisms aroused. The main strategies for improving SAM productivity of microorganisms include conventional breeding and metabolic engineering. This review summarizes the recent research progress in improving microbial SAM productivity to facilitate further improving SAM productivity. The bottlenecks in SAM biosynthesis and the solutions were also addressed.


Subject(s)
S-Adenosylmethionine/metabolism , Plant Breeding , Fermentation , Metabolic Engineering
2.
Biomédica (Bogotá) ; 34(supl.1): 41-49, abr. 2014. ilus, tab
Article in English | LILACS | ID: lil-712420

ABSTRACT

Introduction: Aminoglycosides like streptomycin are well-known for binding at specific regions of ribosome RNA and then acting as translation inhibitors. Nowadays, several pathogens have been detected to acquire an undefined strategy involving mutation at non structural ribosome genes like those acting as RNA methylases. rsmG is one of those genes which encodes an AdoMet-dependent methyltransferase responsible for the synthesis of m 7 G527 in the 530 loop of bacterial 16S rRNA. This loop is universally conserved, plays a key role in ribosomal accuracy, and is a target for streptomycin binding. Loss of the m 7 G527 modification confers low-level streptomycin resistance and may affect ribosomal functioning. Objectives: After taking into account genetic information indicating that some clinical isolates of human pathogens show streptomycin resistance associated with mutations at rsmG , we decided to explore new hot spots for mutation capable of impairing the RsmG in vivo function and of promoting low-level streptomycin resistance. Materials and methods: To gain insights into the molecular and genetic mechanism of acquiring this aminoglycoside resistance phenotype and the emergence of high-level streptomycin resistance in rsmG mutants, we mutated Escherichia coli rsmG and also performed a genotyping study on rpsL from several isolates showing the ability to grow at higher streptomycin concentrations than parental strains. Results: We found that the mutations at rpsL were preferentially present in these mutants, and we observed a clear synergy between rsmG and rpsL genes to induce streptomycin resistance. Conclusion: We contribute to understand a common mechanism that is probably transferable to other ribosome RNA methylase genes responsible for modifications at central sites for ribosome function.


Introducción. Los aminoglucósidos son moléculas antibióticas capaces de inhibir la síntesis de proteínas bacterianas tras su unión al ribosoma procariota. La resistencia a aminoglucósidos está clásicamente asociada a mutaciones en genes estructurales del ribosoma bacteriano; sin embargo, varios estudios recientes han demostrado, de forma recurrente, la presencia de un nuevo mecanismo dependiente de mutación que no involucra genes estructurales. El gen rsmG es uno de ellos y se caracteriza por codificar una metiltransferasa que sintetiza el nucleósido m 7 G527 localizado en el loop 530 del ribosoma bacteriano, este último caracterizado como sitio preferencial al cual se une la estreptomicina. Objetivo. Partiendo de las recientes asociaciones clínicas entre las mutaciones en el gen rsmG y la resistencia a estreptomicina, este estudio se propuso la caracterización de nuevos puntos calientes de mutación en este gen que puedan causar resistencia a estreptomicina usando Escherichia coli como modelo de estudio. Materiales y métodos. Se indagó sobre el mecanismo genético y molecular por el cual se adquiere la resistencia a estreptomicina y su transición a la resistencia a altas dosis mediante mutagénesis dirigida del gen rsmG y genotipificación del gen rpsL . Resultados. Se encontró que la mutación N39A en rsmG inactiva la proteína y se reportó un nuevo conjunto de mutaciones en rpsL que confieren resistencia a altas dosis de estreptomicina. Conclusiones. Aunque los mecanismos genéticos subyacentes permanecen sin esclarecer, se concluyó que dichos patrones secuenciales de mutación podrían tener lugar en otros genes modificadores del ARN bacteriano debido a la conservación evolutiva y al papel crítico que juegan tales modificaciones en la síntesis de proteínas.


Subject(s)
Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/genetics , Mutation, Missense , Methyltransferases/genetics , Point Mutation , RNA Processing, Post-Transcriptional/genetics , RNA, Bacterial/metabolism , /metabolism , Streptomycin/pharmacology , Amino Acid Sequence , Binding Sites/genetics , Catalytic Domain/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Escherichia coli/enzymology , Methylation , Models, Molecular , Molecular Sequence Data , Methyltransferases/chemistry , Methyltransferases/metabolism , Phylogeny , Protein Conformation , RNA, Bacterial/genetics , /genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , S-Adenosylmethionine/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sequence Deletion , Sequence Homology, Amino Acid
3.
Indian J Biochem Biophys ; 1992 Oct; 29(5): 415-7
Article in English | IMSEAR | ID: sea-28953

ABSTRACT

Nitrous oxide (N2O) decreased in vivo oxidation of histidine in rats fed a basal diet marginally deficient in methionine, although hepatic levels of S-adenosylmethionine (AdoMet) were not significantly altered. Excess dietary methionine increased hepatic levels of AdoMet and increased histidine oxidation. However, it did not protect histidine oxidation when the rats were treated with N2O. Parenteral administration of methionine greatly increased hepatic levels of AdoMet and increased histidine oxidation in normal and N2O treated rats. This indicates that when hepatic levels of AdoMet are greatly elevated by administration of methionine, N2O does not affect in vivo histidine oxidation.


Subject(s)
Animals , Histidine/metabolism , Kinetics , Liver/drug effects , Male , Methionine/metabolism , Nitrous Oxide/pharmacology , Rats , Rats, Sprague-Dawley , S-Adenosylmethionine/metabolism
4.
Indian J Biochem Biophys ; 1991 Apr; 28(2): 96-9
Article in English | IMSEAR | ID: sea-27805

ABSTRACT

The possibility of methylation, acetylation and phosphorylation of the bases of DNA has been studied in vitro by incubating nuclei of the liver and cerebral hemisphere of young (18 wk) and old (120 wk) rats with radioactive donors, [3H]S approximately adenosyl methylmethionine, [3H]-acetyl approximately CoA and [32P]-gamma-ATP for methylation, acetylation and phosphorylation of the bases, respectively. Nuclei were also incubated with S approximately adenosyl homocysteine to inhibit methylation with sodium butyrate to stimulate acetylation and with alkaline phosphatase to remove phosphate groups incorporated into the bases. DNA was then extensively purified and incorporation of each type of label was estimated. The data show that both methylation and acetylation of DNA of old rats were significantly higher than those of young rats, and phosphorylation is lower in old rats. Such modifications may prevent base pairing between the two strands of DNA, alter its conformation and binding of trans-acting factors at specific sites, and thereby alter gene expression.


Subject(s)
Acetyl Coenzyme A/metabolism , Acetylation , Adenosine Triphosphate/metabolism , Aging , Animals , Brain/growth & development , Cell Nucleus/metabolism , DNA/metabolism , Female , Liver/growth & development , Methylation , Phosphorylation , Rats , Rats, Inbred Strains , S-Adenosylmethionine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL